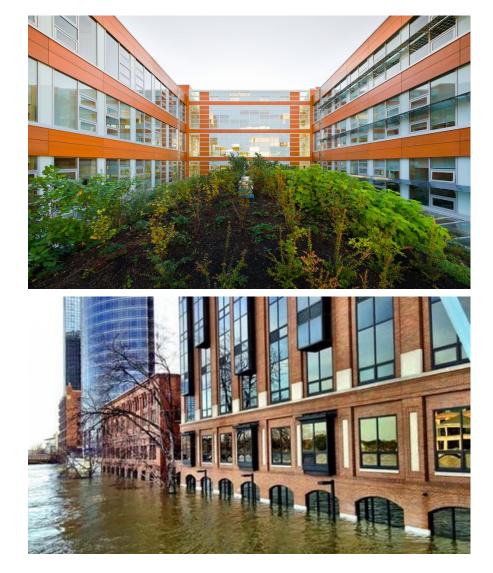


Roadmap to Resilient, Ultra-Low Energy Buildings in the Pacific Northwest

2017 PNWER Annual Summit Portland Oregon July 24th, 2017 Andrew Pape-Salmon | P.Eng., MRM, FCAE

Overview


- \rightarrow Value Proposition
- → Roadmap to Resilient, Ultra-Low Energy Buildings
- → Case Studies
- → PNWER-wide Benefits Assessment
- \rightarrow Future Work

Value Proposition

Benefits from Addressing Energy in Buildings

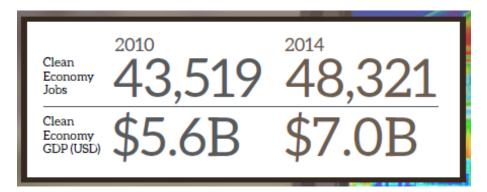
- \rightarrow Investment and Jobs
- \rightarrow Improved affordability
- → Reduced carbon emissions
- → Improved occupant healthfulness and comfort
- → Improved building durability and resilience

Investment and Jobs

→ Pacific Coast Collaborative – West Coast Clean Economy Report

To Top Gre Pub Pub Rec Org Was Sola Prof Hyd A report commissioned by: Edu **Pacific Coast** COLLABORATIVE West Coast Clean Economy: 2010-2014 Jobs Update \rightarrow **NOVEMBER 2015**

8.9%


rerall growth rate for clean onomy jobs across the PCC

pre clean economy jobs 2014 over 2010

Investment and Jobs - Oregon

\rightarrow 11% overall growth from 2010 to 2014

Top 10 Segments

Public Sector (Federal, State, Local)	8,007
Green Architecture & Construction Services	6,601
Public Mass Transit & Rail	5,932
Sustainable Forestry Products	4,518
Recycling & Reuse	3,224
Hydropower	2,388
Organic Food & Sustainable Farming	2,301
Waste Management & Treatment	1,999
Solar Photovoltaic	1,761
Education & Training	1,381

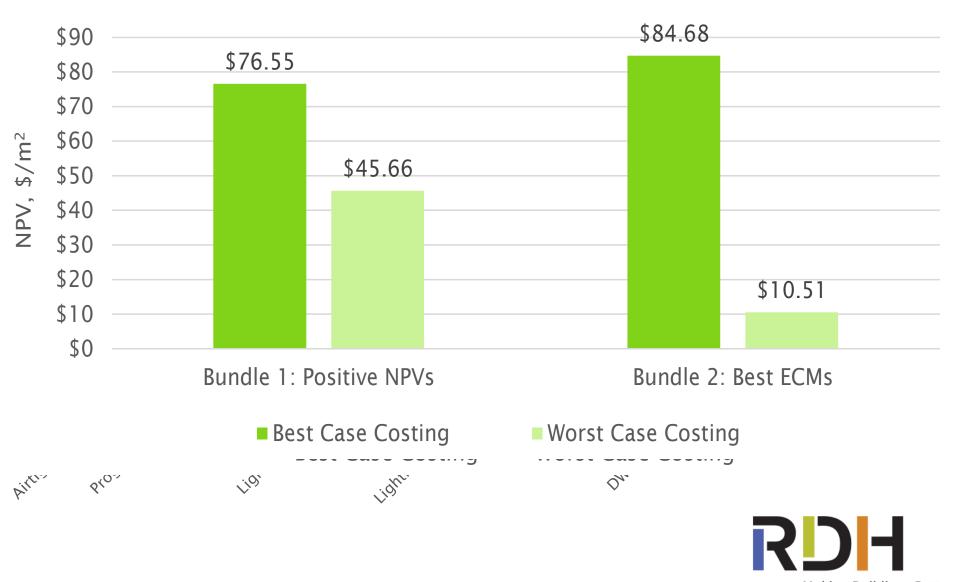
Investment and Jobs - Washington State

\rightarrow 10% overall growth from 2010 to 2014

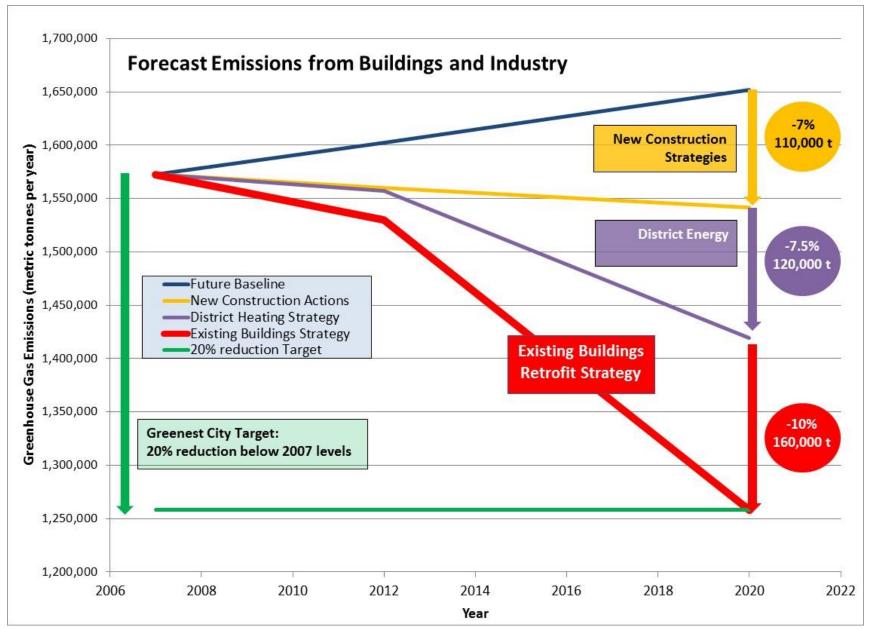
Top 10 Segments

Public Mass Transit & Rail	14,511
Green Architecture & Construction Services	13,683
Organic Food & Sustainable Farming	10,245
Public Sector (Federal, State, Local)	8,414
Hydropower	6,789
Recycling & Reuse	6,123
Remediation	5,673
Waste Management & Treatment	4,631
Sustainable Forestry Products	3,482
Professional Energy Services	2,929

Investment and Jobs - British Columbia


\rightarrow 13% overall growth from 2010 to 2014

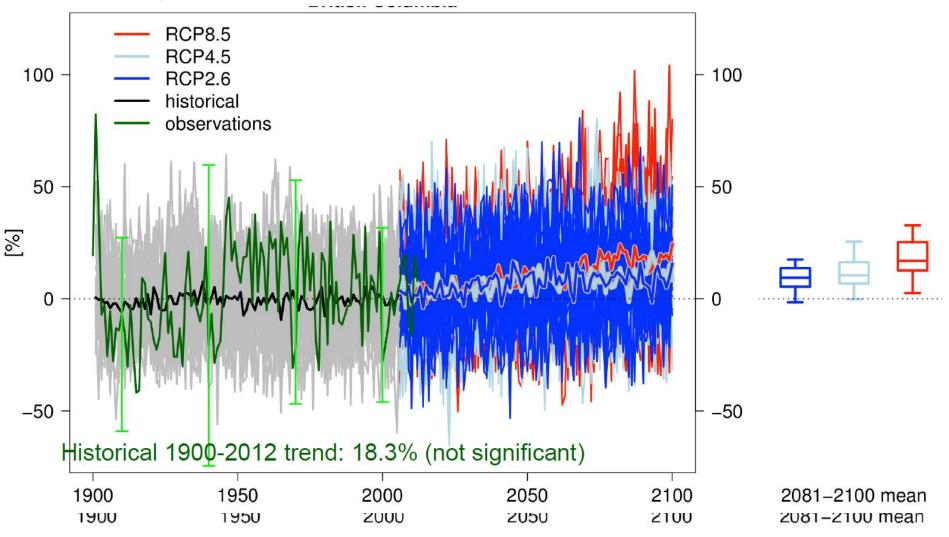
Top 10 Segments


Public Mass Transit & Rail	12,246
Green Architecture & Construction Services	11,698
Hydropower	8,821
Sustainable Forestry Products	6,166
Recycling & Reuse	3,660
Education & Training	3,645
Waste Management & Treatment	3,259
Public Sector (Federal, Provincial, Local)	2,827
Smart Grid	2,518
Professional Energy Services	2,308

Improved Affordability

Making Buildings Better

Reduced Greenhouse Gases



Winter (DJF) Precipitation

Precipitation change relative to 1986-2005

Roadmap Background

PNWER Roadmap to Resilient, Ultra-Low Energy Buildings

- \rightarrow A document that will seek endorsement by legislators and private sector leaders from 10 PNWER jurisdictions
- \rightarrow **Goal** is to inform energy-efficiency legislation to achieve the desired benefits and specific targets for the year 2030
- \rightarrow Provides:
 - > Market data and analysis
 - Metrics, targets, timelines >
- Policy best practices >
- Market-driven solutions
- \rightarrow **Includes** <u>case studies</u> of new and retrofitted buildings that demonstrate best practices throughout the PNWER

FORTIS BC

BC Ministry of

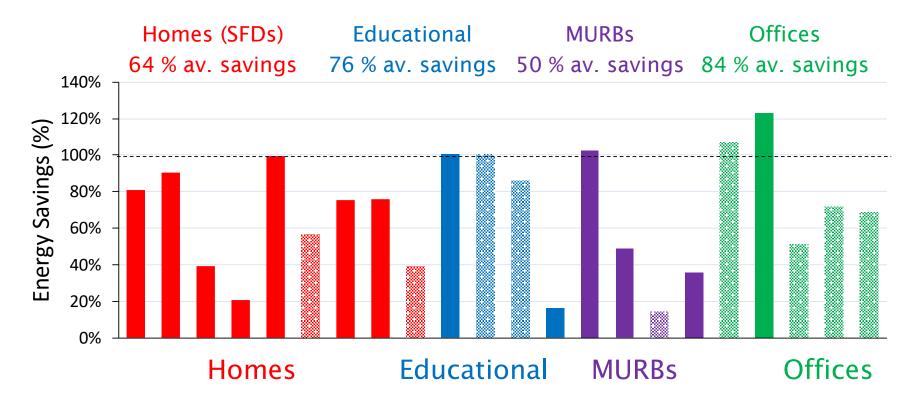
Mines

Roadmap Progress

Task	Status
Policy review	Complete – PNWER 2013 Summit
Roadmap Launch and Terms of Reference	Complete – PNWER Summit and Economic Leadership Forum 2014
Case study analysis of energy savings and financial benefit	Complete - PNWER Summit and Economic Leadership Forum 2016
Extrapolation of energy savings and emission reductions	In progress – scoping at PNWER Summit 2017, results at Forum

Case Studies

Case Studies - 22 and counting....


Average energy savings:

Houses -64 % Educational -76 % MURBs -50 % Offices -84 %

Average GHG emission reductions across all buildings:

-70% CO₂-equiv

Energy Savings of Case Studies

- Retrofit

- New Construction

Oregon Case Study 1: Hood River Middle School

- → Jurisdiction: Oregon
- → Building Type: Educational
- → Construction Type: Retrofit
- → Original construction: 1927
- → Retrofit completed: 2010
- → Site description: Rural, old bus storage barn
- → Ratings: Living Building Challenge Net Zero Energy Certified, LEED Platinum

HPD Magazine

LIVING BUILDING CHALLENGE

Case Study 1: Hood River Middle School

Strategy	Fuse sustainable design with teaching curriculum
HVAC	Ground source heat pump and radiant floors PV preheats winter air, river water cooling in summer
Walls	Insulated concrete forms (ICF)
Windows	Triple glazed windows with wood frames Deciduous vines provide seasonal solar shading

- → Rainwater collection minimizes potable water demand by 89%
- \rightarrow PV \rightarrow Net Zero
- → Greenhouse for food production and teaching

Case Study 2: Collaborative Life Sciences Building, OHSU

- → Jurisdiction: Oregon
- → Building Type: Research/Health
- → Construction Type: New
- → Original construction: 2014
- → Site description: OHSU Schnitzer Campus. Brownfield development site.
- \rightarrow **Ratings**: LEED Platinum

Image source: http://lopressroom.com/viracon/aia-topten-2015

Case Example 2: Collaborative Life Sciences Building, OHSU

HVAC	Hydronic/radiant heating systems. Atrium and lab exhaust heat recovery. Energy efficient condensing boilers. Heat recovery chillers.
Roof	Three green roofs installed on areas of building
Lighting	Seasonal solar paths were analyzed to ensure design for optimal day lighting and solar shading

- → Potable water needs were reduced 60% through rainwater harvesting (90,000 gallon cistern) and greywater re-use in toilets
- → >3 tons (85%) of construction waste diverted from the landfill

http://www.ohsu.edu/news/clsb/

Region-wide Benefits Assessment

Region-wide Impact Assessment

- → Forecast benefits and costs of implementing archetypes across the entire PNWER region by 2030
- → Benefits include: Energy savings, GHG emission reductions, associated cost savings, resiliency, investment and job creation.
- \rightarrow Extrapolation of case study impacts in line with:
 - \rightarrow Current and future building stock and floor space by jurisdiction
 - \rightarrow Consideration of regional climates and energy mix by jurisdiction

Example: BC Paper on Standards for Existing Buildings

		OPTION 1	OPTION 1B	OPTION 2
	in 2025	2,800 GWh/yr	2,900 GWh/yr	3,000 GWh/yr
Cumulative Annual	111 2023	(9,554,000 Mbtu/yr)	(9,895,000 Mbtu/yr)	(10,236,000 Mbtu/yr)
Electricity Savings	in 2030	6,400 GWh/yr	7,100 GWh/yr	7,400 GWh/yr
	111 2030	(21,380,000 Mbtu/yr)	(24,226,000 Mbtu/yr)	(5,250,000 Mbtu/yr)
Cumulative Annual	in 2025	77 GWh/yr (263,000Mbtu/yr)	215 GWh/yr (734,000 Mbtu/yr)	470 GWh/yr (1,604,000 Mbtu/yr)
Natural Gas Savings	in 2030	270 GWh/yr (921,000 Mbtu/yr)	880 GWh/yr (3,003,000 Mbtu/yr)	2,200 GWh/yr (7,507,000 Mbtu/yr)
Cumulative Annual	Cumulative Annual in 2025	0.04 Mt/yr	0.06 Mt/yr	0.11 Mt/yr
GHG Savings in 2030	0.11 Mt/yr	0.20 Mt/yr	0.47 Mt/yr	
Discounted in 2025 Cumulative ICC	in 2025	\$405 million	\$405 million	\$483 million
(2017 \$)	in 2030	\$560 million	\$560 million	\$764 million
Discounted	in 2025	\$123 million	\$138 million	\$234 million
Cumulative NPV (2017 \$)	in 2030	\$175 million	\$205 million	\$439 million

Extrapolation Methodology

- \rightarrow Estimate the annual floor area for each building type
- \rightarrow Estimate the annual energy savings from case study results
- → Extrapolate energy savings by constructing and retrofitting buildings to the performance levels of the PNWER case studies rather than common practices
- → Estimate associated GHG savings through jurisdiction specific and region wide emissions factors
- → The annual savings will be extrapolated over the 30-yr time horizon with staged implementation to estimate cumulative annual savings in key years

Building Area

- \rightarrow Building Retrofit Area = Total Area x Retrofit Rate
- \rightarrow Building New Area = Total Area x New Build Rate

\rightarrow Existing Building Area (millions ft²)

Jurisdiction	SFH	Lowrise	Highrise	Educational	Office
AK	348	16	37	15	26
ID	772	35	83	52	51
OR	1875	84	201	81	141
MT	483	22	52	32	32
WA	3334	150	357	143	251
BC	2886	312	132	117	207
AB	2751	218	117	104	184
SK	654	50	32	28	50
YK	25	2	1	1	2
NWT	29	2	1	1	2

→ Source: 2011 SHEU, 2009 SCIEU, 2009 RECS, 2012 CBECS and population weighting for inter-region jurisdiction interpolation

Building Area

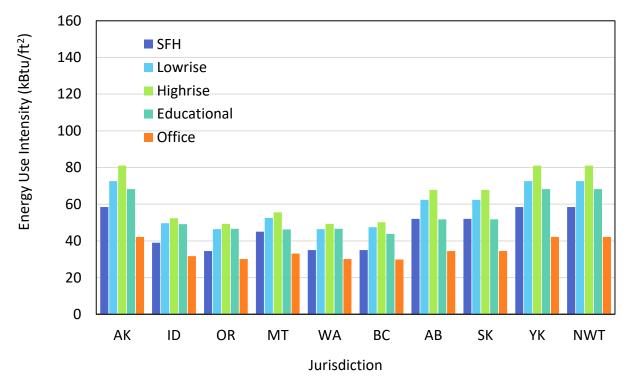
- → Building Retrofit Area = Total Area x Retrofit Rate
- \rightarrow Building New Area = Total Area x New Build Rate
- \rightarrow Retrofit and Construction Rates

Туре	Retrofit Rate	New Build Rate
SFH	1.0%	1.8%
Other	2.0%	1.3%

- → Retrofit Source: Building Energy Retrofit Potential in B.C. Pembina Institute, 2016., Olgyay and Seruto, 2010. "Whole-Building Retrofits: A Gateway to Climate Stabilization", ASHRAE Transactions vol 116, part 2, 2010.
- \rightarrow New Build Source: Extrapolation of 2012 SHEU and 2012 CBECS

Annual Energy Savings

- \rightarrow Savings = Baseline x % Savings from Case studies
- \rightarrow Estimated Savings from Case Studies

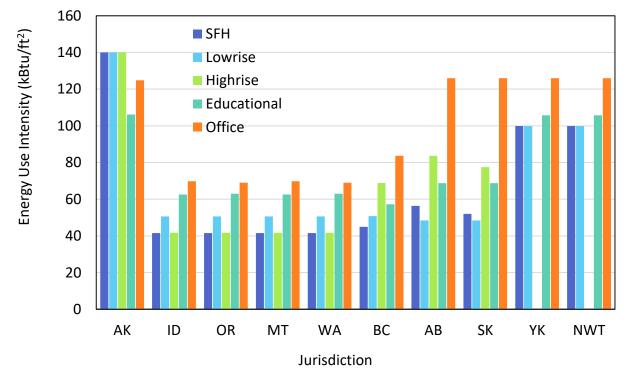

Туре	Retrofit Savings	New Build Savings
SFH	50%	70%
Low-Rise	20%	60%
High-Rise	20%	60%
Educational	80%	60%
Office	65%	70%

→ Note: the retrofit and new construction are relative to different baseline energy use

Annual Energy Savings

 \rightarrow Savings = Baseline x % Savings from Case studies

\rightarrow New Building Baseline, kbtu/ft²



- → Data Source: PNNL Commercial and Residential Prototype Building Modeling results for ASHRAE 90.1-2013 and IRC 2012
- \rightarrow Canadian data from representative US cities

Annual Energy Savings

 \rightarrow Savings = Baseline x % Savings from Case studies

 \rightarrow Retrofit Building Baseline (Existing Buildings), kbtu/ft²

→ Data Source: 2011 SHEU, 2009 SCIEU, 2009 RECS, 2012 CBECS

Emissions Reduction

- \rightarrow Savings = Energy Savings x Emissions Factors
- \rightarrow Jurisdiction Specific Emissions Factors, kg CO₂e per kWh

Jurisdiction	Electricity	Natural Gas
AK	0.50	0.18
ID	0.05	0.18
OR	0.12	0.18
MT	0.59	0.18
WA	0.06	0.18
BC	0.01	0.18
AB	0.64	0.18
SK	0.71	0.18
YK	0.04	0.18
NWT	0.04	0.18

→ Potential to use regional emissions factor based on Western Electricity Coordinating Council factors (WECC)

Data Source: US EPA eGRID database, BC Best Practices for Quantifying GHG Emissions, Alberta Carbon Offset Emission Factors Handbook

Future Work

- \rightarrow New Case Studies
- \rightarrow PNWER-wide projections for:
 - \rightarrow Energy use reduction
 - → Greenhouse gas emission reduction
- \rightarrow Economic assessment
 - \rightarrow Energy savings, net benefit to society
 - \rightarrow Investment, jobs, economic diversification
- \rightarrow Jurisdiction specific analysis and extrapolation
 - \rightarrow Depends on partners, sponsorships
- \rightarrow Analysis of policy options and market-driven solutions
- \rightarrow White Paper

Conclusions

- → Ultra-low energy new construction and deep energy retrofits have been demonstrated throughout PNWER
- → Energy savings can improve affordability for citizens, businesses and institutions
- → Value proposition also includes jobs, GHG reductions, improved resilience
- → Proposed "Roadmap" could be used to guide PNWER jurisdictions to achieve those objectives, while providing flexibility for policy approaches
- → Partnership underway through PNWER Energy and Environment Working Group to complete research and prepare a White Paper

Discussion

- → Value Proposition
- → Roadmap to Resilient, Ultra-Low Energy Buildings
- → Case Studies
- → PNWER-wide Benefits Assessment
- \rightarrow Future Work

For more information, contact: Jennifer Grosman Pacific Northwest Economic Region Jennifer.Grosman@pnwer.org

