

Distributed Energy Resources in the Pacific Northwest

Ken Nichols Principal – EQL Energy

Presented to: PNWER Summit 2015

July 14, 2015

ken@eqlenergy.com 503-438-8223

Distribution Utility of the Future

Distribution utilities will no longer just supply electric energy to customers, but will plan for, coordinate, and manage the flow of electric energy to, from, and between customers.

Northwest Power Act

Priority shall be given: first, to <u>conservation;</u> second, to <u>renewable resources;</u> third, to generating resources <u>utilizing waste heat or generating resources of high</u> <u>fuel conversion efficiency</u>; and fourth, to all other resources.

"Electric power" means electric peaking capacity, or electric energy, or both.

"system cost" means an estimate of all direct costs of a measure or resource over its effective life, including, if applicable, the <u>cost of distribution and transmission to</u> <u>the consumer</u> and, among other factors, waste disposal costs, end-of-cycle costs, and fuel costs (including projected increases), and such quantifiable environmental costs and benefits.

https://www.nwcouncil.org/reports/poweract/

Steps Toward the Future

- Is Elon Musk the utility of the future?
 - Utility business models in transition Large Supply-Side Capex >>>> Grid Modernization, Reliability, IT
 - "Every feeder is a snowflake"
 - DER value: Location, Location, Location
 Battle: Utility Integration Cost vs. DER Value
 - Technology (trade allies and vendors) and Customers Utility Roadmaps: pilot>demo>scale
- Legislative actions that work
 - Value of solar DER >>> DRP
 - Distribution Resources Planning (CA AB327, WA 2045)
 - Rate Strategies (reflect Utility costs, customer preference)
 - Combined Heat and Power (WA E2SHB 1095, OR SB 844)
 - Support (Mandate) Standards (OpenADR, IEEE1547)
 - Demand Response follows Energy Efficiency (NPCC 7th Plan)

Capacity and Energy

Capacity (dispatchable)	Energy (variable)		
Capacity DSM (aka Demand Response)	Energy DSM (aka Energy Efficiency)		
Energy Storage (Customer, Utility)	Solar		
Dispatched Generation	Wind		
Electric Vehicle Charging			
Combined Heat & Power			
Smart Inverter services (e.g., VAR Support)			

DER Drivers in PNWER

- Cost declines in solar, storage, and smart grid
 - 40% decline since 2011, Panels \$1.31/Watt to \$.50/Watt (peaker is \$1.2/Watt not including fuel)
 - Import tariffs on Chinese solar will slow the steep decline, but decline will continue.
 - \$.038/kWh 20 year solar PPA for NV Energy
 - Tesla's gigafactory to reduce Li-ion battery cost
 - Smart building management systems, thermostats, water heaters, motor load, VFDs

Customer Expectations

• Lower costs, reliability, and environmental concern

Economic Development

• PNW: Solar Jobs > 6,000. Energy Efficiency > 25,000 jobs

Reliability

- 90% of outages is on distribution system. (200GW of backup power in US)
- PNW requirement for flexible capacity

Reduced rates

- Avoid costs for Transmission, Distribution, Generation, etc.
- 1990s Puget Sound Reliability: voltage support, targeted EE

- Customer desire for self-reliance increasing
- E&Y: 33% of the multi-national firms are expected to meet a greater share of their energy needs through self-generation over the next five years
- Navigant: nearly 75% of surveyed residential customers have "concerns about the impact electricity costs have on their monthly budgets, and 63% are interested in managing energy used in their homes"
- Best Buy: 36% of residential customers desire to "financiall and physically protect the home" (Home Safeguarding persona)

ERNST & YOUNG

NAVIGANT

>5,000 Solar Jobs in PNW>25,000 Energy Efficiency Jobs in PNW

EQL ENERGY

Campus DER for 69kVA Substations Ell ENERGY

DER for two 69kVA Substations

July 14, 2015

BMS Measures

Measure	Winter KVA Shed Level 1	Winter KVA Shed Level 2	Summer KVA Shed Level 1	Summer KVA Shed Level 2
Command to Low Speed	4		4	
Command VFD to 50% cfm	0	12	0	12
Convert to Variable Flow Loop	0		0	
Curtail Radiant System	8		8	
Disable Fan Coil Unit Fans	0	0	0	0
Install VFD on Lab Exhaust Fans	83	0	83	0
Lock-Out Elevators	0	120	0	120
Lock-Out EV Chargers	50	0	50	0
Pre-Cool Ice Rink	0	500	0	500
Reduce dP Setpoint	19	0	9	0
Reduce Duct Static Pressure Set Point	321	0	321	0
Reduce Velocity Pressure	9	0	9	0
Remove Bypass Flow Control to dP	11	0	11	0
Shut Off AHU	11	117	11	117
Shut Off Chiller	0	66	0	949
Shut Off DW Booster Pumps	71	0	71	0
Shut Off Electric Boiler	40	0	40	0
Shut Off Heat Pumps	0	108	0	0
Shut Off Heat Recovery	0	146	0	0
Shut Off HR Chiller	0	191	0	0
Shut Off Lights	220	0	220	0
Shut Off Pump	12	21	12	21
Temperature Setback	68	0	274	117
Tune VFD Controls	22	0	22	0
Totals	949	1281	1145	1836

NPV of Substation Capacity DSM

Distribution Resource Planning (DRP) Ell ENERGY

- Purpose is for distribution planning to include DER energy capacity, "smart" capabilities, energy efficiency, and market incentives during long-term distribution planning
- These factors would then be balanced against the avoided costs of ""traditional" distribution planning

SCE Available Capacity by Line Section

ArcGIS - DERiM Web Map

💄 Sign In

Evolution of DRP Optimal Location Benefits Analysis

- What are the immediate benefit categories that can reasonably be evaluated?
- What are the next logical set (incl. data and tools needed) for system-wide DRPs?

PNW: Conservation and Demand Response Lowest Cost, Lowest Risk

July 14, 2015

Energy Efficiency Net Benefit ~\$1 Billion for BPA

July 14, 2015

Focus on Peak Demand Reduction

DER will be 23% of western power by

DER	2022 WECC (MW) ¹	2013 PNW (MW)	2022 PNW Market Potential ^{2, 3}
Solar (Helena better than Jacksonville FL)	25,000	188	2,300
Combined Heat and Power (CHP)	9,000	15	1,000
			,
Demand Response – Renewable Integration	2,600	0	305
Demand Response – Peak Reduction	4,700	420	1,000
Energy Storage	1,800	5	55
Dispatchable Backup Generators		100	800
Energy Efficiency (amounts not included)			
Total	43,400	713	14,660

- 1. Source: EQL Energy for Western Interstate Energy Board May 2015,
- 2. Summary of 2013 TEPPC high DG case, 2013 LBNL
- 3. http://www.westernenergyboard.org/sptsc/workgroups/dsmwg/webinars/2013/2-HiDSM-DGwebdr.pdf

Stakeholders

- Distribution Utility
- Utility Shareholders
- Regulators
- Ratepayers
- DER owners
- Economic Development
 - (politicians/business associations)
- Solar industry (175,000 employed)
- Cleantech Companies
- Third party DER, Retail energy providers
- Utility Distribution Equipment Vendors
- Concerned Citizens

Summary

Legislative / Regulatory actions

- Support Utility Transition in business models
- Value of solar DER >>> DRP
 - Distribution Resources Planning (CA AB327, WA 2045)
- Utility Roadmaps pilot>demo>scale
- Combined Heat and Power (WA E2SHB 1095, OR SB 844)
- Support (Mandate) Standards -OpenADR, IEEE1547
- Obtain Demand Response as we have Energy Efficiency (NPCC 7th Plan)

Ken Nichols, Principal, EQL Energy 503 438 8223 <u>ken@eqlenergy.com</u> <u>www.eqlenergy.com</u>

Link to Western Interstate Energy Board paper: Emerging Changes in Electric Distribution Systems in Western States and Provinces

http://westernenergyboard.org/2015/05/final-report-released-by-eql

Extra Slides

Utility Business Models

What does your utility see as its biggest growth opportunity over the next five years?

July 14, 2015

Powerful Macro Trends Drive Home Standby Penetration Opportunity

North American Penetration Opportunity⁽⁴⁾

Every 1% of increased penetration equals ~ \$2 billion of market opportunity

(1) Source: North American Electrical Reliability Council, U.S. Energy Information Administration. Affecting more than 50,000 customers.

(2) At \$1mm/mile.

- (3) Source: Company warranty registration data
- (4) Source: Management estimates

Utility Distribution of the Future

July 14, 2015

PNW Needs Capacity (MW)

PNW projection for roof-top solar (GWh)

Source: Northwest Power and Conservation Council, Nov. 2014

Net Metering & Value of Solar

Net Metering and VOS under review in most states

Avoided Costs

- 1. Energy Costs
- 2. System Generation Capacity Additions
- 3. Reduced Transmission line losses (System Losses)
- 4. Avoided Transmission and Distribution
- 5. Ancillary Services and Grid Support
- 6. Avoided Natural Gas Pipeline Costs
- 7. Avoided Renewable Costs (RPS states)
- 8. Environmental
- 9. Financial: Fuel Price Hedge (adjustable mechanism)
- 10. Financial: Market Price Response
- 11. Security: Reliability and Resiliency (Risk)
- 12. Social: Economic Development
- 13. "Behind-the-Meter Production During Billing Month
- 14. (Valuing the benefit of load reduction from net metering)"
- 15. Utility: Integration Costs
- 16. Utility: Interconnection Costs
- 17. Utility: Administration Costs
- 18. "Rate Impacts: Net Metering Credits
- 19. (Covers the difference between the retail rate credit for excess generation and the avoided cost rate)"
- 20. Rate Impacts: Lost Utility Revenue
- 21. Incentive Costs (i.e. utility rebates (NV)
- 22. Tax credits (State and Federal)
- 23. Location Value

Estimated Value of Solar in Idaho

Component	1 MW DC, yearly	Per MWh
Energy	\$43,000 to \$48,500	\$32 to \$35
Line loss	\$3,200 to \$3,600	\$2 to \$3
Wheeling	\$0 to \$6,900	\$0 to \$5
Peak capacity	\$0 to \$28,100	\$5 to \$21
Renewable portfolio standard	\$0 to \$6,800	\$0 to \$5
Hedge	\$0 to \$2,700	\$0 to \$2
Integration	(\$1,400) to \$0	(\$1) to \$0
Transmission capacity	-	-
Distribution system	-	-
Externalities	-	-
Voltage control	-	-
Total	\$44,900 to \$96,700	\$38 to \$71

British Columbia

Solar: not now, DR target T&D

Distribution Resources Planning Purposes () [[] [NERGY (1)

- Identify optimal locations for Distributed Energy Resources
- Evaluate locational benefits of DERs based on:
 - Reductions versus increases in local generation capacity needs
 - Avoided costs versus increased investment for distribution infrastructure, safety benefits, reliability benefits
 - Any other savings or costs that DERs may provide to the grid or to ratepayers
- Integrated Capacity Analysis
- Propose or identify standard tariffs, contracts, or other mechanisms for deployment of cost-effective DERs that satisfy distribution planning objectives

DRP Process: "More Than Smart (MTS)" Working Group

- Purpose:
 - Provide an open, voluntary stakeholder forum to discuss core issues
- Objectives:
 - Define common parameters for the development of distribution planning scenarios
 - Identify and define the integrated engineering-economic analysis required to conduct distribution planning in the context of AB 327 requirements
 - Identify the considerations to meet customers' needs and California's policy objectives.
 - Define the scope and parameters of an operational/DER market information exchange
 - Define distribution services associated with identified DER values, including performance requirements

DER Wholesale Value Components (1/2)

Objective is to define a list of **mutually exclusive and collectively exhaustive** (MECE) value categories

Value Component	Definition
WECC Bulk Power System Benefits	Regional BPS benefits not reflected in System Energy Price or LMP
CA System Energy Price (NEM 2.0)	Estimate of CA marginal wholesale system-wide value of energy
Wholesale Energy	Reduced quantity of energy produced based on net load
Resource Adequacy (NEM 2.0 modified)	Reduction in capacity required to meet Local RA and/or System RA reflecting changes in net load and/or local generation
Flexible Capacity	Reduced need for resources for system balancing
Wholesale Ancillary Services (NEM 2.0)	Reduced system operational requirements for electricity grid reliability including all existing and future CAISO ancillary services
RPS Generation & Interconnection Costs (NEM 2.0)	Reduced RPS energy prices, integration costs, quantities of energy & capacity
Transmission Capacity	Reduced need for system & local area transmission capacity
Generation/DER Deliverability	Increased ability for generation and DER to deliver energy and other services into the wholesale market
Transmission Congestion + Losses (NEM 2.0 modified)	Avoided locational transmission losses and congestion as determined by the difference between system marginal price and LMP nodal prices
Wholesale Market Charges	L&E/ମ¢କହୋମିବେ reduced wholesale market & trømøreniesଭାଡଡା/ ୫୦୯୦/S§5 charges

Wholesale

DER Distribution Value Components (2/2)

	Value Component	Definition
=	Subtransmission, Substation & Feeder Capacity (NEM 2.0 modified)	Reduced need for local distribution system upgrades
	Distribution Losses (NEM 2.0)	Value of energy due to losses between wholesale transaction and distribution points of delivery
	Distribution Steady-State Voltage	Improved steady-state (generally >60 sec) voltage, voltage limit violation relief, reduced voltage variability, compensating reactive power
	Distribution Power Quality	Improved transient voltage and power quality, including momentary outages, voltage sags, surges, and harmonic compensation. <i>May also extend the life of distribution equipment</i>
	Distribution Reliability + Resiliency+ Security	Reduced frequency and duration of outages & ability to withstand and recover from external natural, physical and cyber threats
	Distribution Safety	Improved public safety and reduced potential for property damage
	Customer Choice	Customer & societal value from robust market for customer alternatives
5	CO2 Emissions (NEM 2.0 modified)	Reductions in federal and/or state carbon dioxide emissions (CO2) based on cap-and-trade allowance revenue or cost savings or compliance costs
	Criteria Pollutants	Reduction in local emissions in specific census tracts utilizing tools like CalEnviroScreen. Reduction in health costs associated with GHG emissions
5	Energy Security	Reduced risks derived from greater supply diversity and less lumpiness
	Water Use	Synergies between DER and water management (electric-water nexus)
	Land Use	Environmental benefits & avoided property value decreases from DER deployment instead of large generation projects
	Economic Impact	lu btate ብባብ ້/or local net economic impact (e.g., jobs, ነዣ₩ৼ/ዩዓዝểክሮ፣ናያነጋዎንየል√ 36 income)

Distribution

Locational Value: Assessment of DER by Adding Avoided Costs and Benefits

WIEB/SPSC Report: Essential Recommendations

- Develop long term distribution planning roadmaps
 - ✓ Use Open Stakeholder process for roadmap
 - ✓ Include if and when formal DRPs are necessary for which locations
 - ✓ Include risk assessments of technologies and reliability of resources

Do not re-invent what has already been achieved

- ✓ Use existing DRP costing methodology, as applicable
- ✓ Follow SIWG technological requirements and IEEE 1547 standard
- ✓ Use existing integration and communication standards for interoperability

Address cost allocation early

- ✓ Focus on "least regrets" solutions
- ✓ Enhance market equitability ("fairness") over time (not just the last DER)
- ✓ Provide pricing and investment stability
- ✓ Minimize technological obsolestendes

Addressing EV Load Growth

EV Cars in Urban Markets

02-14-14 st

7,896 Electric Vehicles registered in Washington

As of January 1, 2014

Source: Washington State Department of Transportation

July 14, 2015

EV Cars in Urban Markets

Roadmaps

Without Planning DER integration may be utility asset heavy

Item	Violation Trigger	Total
Installed DG (MW)		902
Regulator	Feeder Reverse Flow	\$308,000
LTC	Substation Transformer Reverse Flow	\$1,642,000
Reconductoring	Exceed 50% Backbone Conductor/Cable	\$75,588,700
Substation Transformer and Switchgear	Exceed 50% Capacity	\$54,766,000
Distribution Transformer	Exceed 100% Loading, % GDML Linear Relationship to % Transformers Upgraded	\$15,617,535
Poles and Secondary	Assumed 15% of Distribution Transformer Replacements need poles/secondary	\$3,533,342
Grounding Transformers	Exceed 33% GDML (66% in model)	\$43,045,200
Total		\$194,500,777