Distributed Energy Resources in the Pacific Northwest

Ken Nichols
Principal - EQL Energy
Presented to:
PNWER Summit 2015
July 14, 2015
ken@eqlenergy.com
503-438-8223

Distribution Utility of the Future

Distribution utilities will no longer just supply electric energy to customers, but will plan for, coordinate, and manage the flow of electric energy to, from, and between customers.

Northwest Power Act

Priority shall be given: first, to conservation; second, to renewable resources; third, to generating resources utilizing waste heat or generating resources of high fuel conversion efficiency; and fourth, to all other resources.
"Electric power" means electric peaking capacity, or electric energy, or both.
"system cost" means an estimate of all direct costs of a measure or resource over its effective life, including, if applicable, the cost of distribution and transmission to the consumer and, among other factors, waste disposal costs, end-of-cycle costs, and fuel costs (including projected increases), and such quantifiable environmental costs and benefits.
https://www.nwcouncil.org/reports/poweract/

Steps Toward the Future

Θ Is Elon Musk the utility of the future?

- Utility business models in transition

Large Supply-Side Capex >>>> Grid Modernization, Reliability, IT

- "Every feeder is a snowflake"
- DER value: Location, Location, Location Battle: Utility Integration Cost vs. DER Value
- Technology (trade allies and vendors) and Customers Utility Roadmaps: pilot>demo>scale
ϵ Legislative actions that work
- Value of solar DER >>> DRP
- Distribution Resources Planning (CA AB327, WA 2045)
- Rate Strategies (reflect Utility costs, customer preference)
- Combined Heat and Power (WA E2SHB 1095, OR SB 844)
- \quad Support (Mandate) Standards (OpenADR, IEEE1547)
- Demand Response follows Energy Efficiency (NPCC 7th Plan)

Capacity and Energy

Capacity (dispatchable)	Energy (variable)
Capacity DSM (aka Demand Response)	Energy DSM (aka Energy Efficiency)
Energy Storage (Customer, Utility)	Solar
Dispatched Generation	Wind
Electric Vehicle Charging	
Combined Heat \& Power	
Smart Inverter services (e.g., VAR Support)	

PNW Needs Flexible Capacity (MW)

DER Drivers in PNWER

€ Cost declines in solar, storage, and smart grid

- 40% decline since 2011, Panels \$1.31/Watt to \$.50/Watt (peaker is \$1.2/Watt not including fuel)
- Import tariffs on Chinese solar will slow the steep decline, but decline will continue.
- $\quad \$.038 / \mathrm{kWh} 20$ year solar PPA for NV Energy
- Tesla's gigafactory to reduce Li-ion battery cost
- Smart building management systems, thermostats, water heaters, motor load, VFDs
© Customer Expectations
- Lower costs, reliability, and environmental concern
€ Economic Development
- PNW: Solar Jobs > 6,000. Energy Efficiency > 25,000 jobs
Θ Reliability
- 90% of outages is on distribution system. (200GW of backup power in US)
- PNW requirement for flexible capacity
© Reduced rates
- Avoid costs for Transmission, Distribution, Generation, etc.
- 1990s Puget Sound Reliability: voltage support, targeted EE

Customers are looking for reliability, self E EOL ENERGY generation, and environmental stewardship.

- Customer desire for self-reliance increasing
- E\&Y: 33\% of the multi-national firms are expected to meet a greater share of their energy needs through self-generation over the next five years

케 Ernst \& Young

NAVIGANT

>5,000 Solar Jobs in PNW
 >25,000 Energy Efficiency Jobs in PNW

Campus DER for 69kVA Substations
 EOL ENERGO

DER for two 69kVA Substations

Measure	Winter KVA Shed Level 1	Winter KVA Shed Level 2	Summer KVA Shed Level 1	Summer KVA Shed Level 2
Command to Low Speed Command VFD to 50\% cfm Convert to Variable Flow Loop Curtail Radiant System Disable Fan Coil Unit Fans Install VFD on Lab Exhaust Fans Lock-Out Elevators Lock-Out EV Chargers Pre-Cool Ice Rink Reduce dP Setpoint Reduce Duct Static Pressure Set Point Reduce Velocity Pressure Remove Bypass Flow Control to dP Shut Off AHU Shut Off Chiller Shut Off DW Booster Pumps Shut Off Electric Boiler Shut Off Heat Pumps Shut Off Heat Recovery Shut Off HR Chiller Shut Off Lights Shut Off Pump Temperature Setback Tune VFD Controls	4 0 0 8 0 83 0 50 0 19 321 9 11 11 0 71 40 0 0 0 220 12 68 22	12 0 0 0 120 0 500 0 0 0 0 117 66 0 0 108 146 191 0 21 0 0	4 0 0 8 0 83 0 50 0 9 321 9 11 11 0 71 40 0 0 0 220 12 274 22	12 0 0 0 120 0 500 0 0 0 0 117 949 0 0 0 0 0 0 21 117 0
Totals	949	1281	1145	1836

NPV of Substation Capacity DSM

Total Value Benefit \$ MM

ϵ EOL ENERGY

Distribution Resource Planning (DRP) € EOl ENERGI

- Purpose is for distribution planning to include DER energy capacity, "smart" capabilities, energy efficiency, and market incentives during long-term distribution planning
- These factors would then be balanced against the avoided costs of ""traditional" distribution planning

SCE Available Capacity by Line Section

ArcGis - DERiM Web Map

\in Ell liffay

 2 Sign \ln

Evolution of DRP Optimal Location Benefits Analysis

- What are the immediate benefit categories that can reasonably be evaluated?
- What are the next logical set (incl. data and tools needed) for system-wide DRPs?

PNW: Conservation and Demand

 Response Lowest Cost, Lowest RiskUS 2013 DR > 28,000 MW

Source: Northwest Power and Conservation Council, Mar. 2015

Energy Efficiency Net Benefit ~\$1 Billion for BPA

Annual Value of Bonneville's 2001-2011 Energy Efficiency Investments Over Their Expected Measure Life

Focus on Peak Demand Reduction

Θ Eal ElIERYY

DER will be 23% of western power by

DER	2022 WECC $($ (MW)	2013 PNW (MW)	2022 PNW Market Potential ${ }^{\mathbf{2}, 3}$
Solar (Helena better than Jacksonville FL)	25,000	188	2,300
Combined Heat and Power (CHP)	9,000	15	1,000
Demand Response - Renewable Integration	2,600	0	305
Demand Response - Peak Reduction	4,700	420	1,000
Energy Storage	1,800	5	55
Dispatchable Backup Generators		100	800
Energy Efficiency (amounts not included)			
Total	$\mathbf{4 3 , 4 0 0}$	$\mathbf{7 1 3}$	$\mathbf{1 4 , 6 6 0}$

1. Source: EQL Energy for Western Interstate Energy Board May 2015,
2. Summary of 2013 TEPPC high DG case, 2013 LBNL
3. http://www.westernenergyboard.org/sptsc/workgroups/dsmwg/webinars/2013/2-HiDSM-DGwebdr.pdf

Stakeholders

- Distribution Utility
- Utility Shareholders
- Regulators
- Ratepayers
- DER owners
- Economic Development
- (politicians/business associations)
- Solar industry (175,000 employed)
- Cleantech Companies
- Third party DER, Retail energy providers
- Utility Distribution Equipment Vendors
- Concerned Citizens
€ Legislative / Regulatory actions
- Support Utility Transition in business models
- Value ofsotár DER >>> DRP
- Distribution Resources Planning (CA AB327, WA 2045)
- Utility Roadmaps - pilot>demo>scale
- Combined Heat and Power (WA E2SHB 1095, OR SB 844)
- Support (Mandate) Standards -OpenADR, IEEE1547
- Obtain Demand Response as we have Energy Efficiency (NPCC 7 ${ }^{\text {th }}$ Plan)

Ken Nichols, Principal, EQL Energy 5034388223
 ken@eqlenergy.com
 www.eqlenergy.com

Link to Western Interstate Energy Board paper:
Emerging Changes in Electric Distribution Systems in Western States and Provinces
http://westernenergyboard.org/2015/05/final-report-released-by-eql

Extra Slides

Utility Business Models

What does your utility see as its biggest growth opportunity over thenext fiveyears?

Powerful Macro Trends Drive

 Home Standby Penetration Opportunity
North American Penetration Opportunity ${ }^{(4)}$

Every 1\% of increased penetration equals ~ \$2 billion of market opportunity

(1) Source: North American Electrical Reliability Council, U.S. Energy Information Administration. Affecting more than 50,000 customers.
(2) At $\$ 1 \mathrm{~mm} / \mathrm{mile}$.
(3) Source: Company warranty registration data
(4) Source: Management estimates

Utility Distribution of the Future

PNW Needs Capacity (MW)

Source: Northwest Power and Conservation Council, Mar. 2015

PNW projection for roof-top solar

Net Metering \& Value of Solar

€ Net Metering and VOS under review in most states

- Avoided Costs

1. Energy Costs
2. System Generation Capacity Additions
3. Reduced Transmission line losses (System Losses)
4. Avoided Transmission and Distribution
5. Ancillary Services and Grid Support
6. Avoided Natural Gas Pipeline Costs
7. Avoided Renewable Costs (RPS states)
8. Environmental
9. Financial: Fuel Price Hedge (adjustable mechanism)
10. Financial: Market Price Response
11. Security: Reliability and Resiliency (Risk)
12. Social: Economic Development
13. "Behind-the-Meter Production During Billing Month
14. (Valuing the benefit of load reduction from net metering)"
15. Utility: Integration Costs
16. Utility: Interconnection Costs
17. Utility: Administration Costs
18. \quad Rate Impacts: Net Metering Credits
19. (Covers the difference between the retail rate credit for excess generation and the avoided cost rate)"
20. Rate Impacts: Lost Utility Revenue
21. Incentive Costs (i.e. utility rebates (NV)
22. Tax credits (State and Federal)
23. Location Value

Estimated Value of Solar in Idaho

Component	$\mathbf{1}$ MW DC, yearly	Per MWh
Energy	$\$ 43,000$ to $\$ 48,500$	$\$ 32$ to $\$ 35$
Line loss	$\$ 3,200$ to $\$ 3,600$	$\$ 2$ to $\$ 3$
Wheeling	$\$ 0$ to $\$ 6,900$	$\$ 0$ to $\$ 5$
Peak capacity	$\$ 0$ to $\$ 28,100$	$\$ 5$ to $\$ 21$
Renewable portfolio standard	$\$ 0$ to $\$ 6,800$	$\$ 0$ to $\$ 5$
Hedge	$\$ 0$ to $\$ 2,700$	$\$ 0$ to $\$ 2$
Integration	$(\$ 1,400)$ to $\$ 0$	$(\$ 1)$ to $\$ 0$
Transmission capacity	-	-
Distribution system	-	-
Externalities	-	-
Voltage control	-	-
Total	$\mathbf{\$ 4 4 , 9 0 0}$ to $\mathbf{\$ 9 6 , 7 0 0}$	$\mathbf{\$ 3 8}$ to $\mathbf{\$ 7 1}$

- Solar: not now, DR target T\&D

© Eall Eliffig

Washington

Afivista

- DRP Proposed (HB 2045)
- Avista - Distribution Automation (DA)

Oregon

- DER Study in PGE IRP

84

- Dispatchable Standby Generation (DSG)

Colorado

- Wind more pressing concern
- Xcel Energy VVO \& DMS Investment

Utah

- Growth potential: QF and utility solar

9,977
California

- Distribution Resources Planning
- 12,000 MW DER Target
- Push for DER other than PV (storage)

Arizona

- IOU Rooftop Solar Pilot
- APS VVO, DMS, \& DA

Distrilbution Resources Planning Purposes EUL E\|ERCil

(1)

- Identify optimal locations for Distributed Energy Resources
- Evaluate locational benefits of DERs based on:
- Reductions versus increases in local generation capacity needs
- Avoided costs versus increased investment for distribution infrastructure, safety benefits, reliability benefits
- Any other savings or costs that DERs may provide to the grid or to ratepayers
- Integrated Capacity Analysis
- Propose or identify standard tariffs, contracts, or other mechanisms for deployment of cost-effective DERs that satisfy distribution planning objectives

DRP Process: "More Than Smart (MTS)" Working Group

ϵ Purpose:

- Provide an open, voluntary stakeholder forum to discuss core issues
ϵ Objectives:
- Define common parameters for the development of distribution planning scenarios
- Identify and define the integrated engineering-economic analysis required to conduct distribution planning in the context of AB 327 requirements
- Identify the considerations to meet customers' needs and California's policy objectives.
- Define the scope and parameters of an operational/DER market information exchange
- Define distribution services associated with identified DER values, including performance requirements

DER Wholesale Value Components (1/2) € Eal ENERGY

Objective is to define a list of mutually exclusive and collectively exhaustive (MECE) value categories

Value Component	Definition
	WECC Bulk Power System Benefits

DER Distribution Value Components (2/2) € EUL ENERGY

	Value Component	Definition
	Subtransmission, Substation \& Feeder Capacity (NEM 2.0 modified)	Reduced need for local distribution system upgrades
	Distribution Losses (NEM 2.0)	Value of energy due to losses between wholesale transaction and distribution points of delivery
	Distribution Steady-State Voltage	Improved steady-state (generally > 60 sec) voltage, voltage limit violation relief, reduced voltage variability, compensating reactive power
	Distribution Power Quality	Improved transient voltage and power quality, including momentary outages, voltage sags, surges, and harmonic compensation. May also extend the life of distribution equipment
	Distribution Reliability + Resiliency+ Security	Reduced frequency and duration of outages \& ability to withstand and recover from external natural, physical and cyber threats
	Distribution Safety	Improved public safety and reduced potential for property damage
$\overline{0}$.000$\infty$$\infty$$\vdots$00000	Customer Choice	Customer \& societal value from robust market for customer alternatives
	CO2 Emissions (NEM 2.0 modified)	Reductions in federal and/or state carbon dioxide emissions (CO2) based on cap-and-trade allowance revenue or cost savings or compliance costs
	Criteria Pollutants	Reduction in local emissions in specific census tracts utilizing tools like CalEnviroScreen. Reduction in health costs associated with GHG emissions
	Energy Security	Reduced risks derived from greater supply diversity and less lumpiness
	Water Use	Synergies between DER and water management (electric-water nexus)
	Land Use	Environmental benefits \& avoided property value decreases from DER deployment instead of large generation projects
	Economic Impact	income)

Locational Value: Assessment of DER by Adding Avoided Costs and Benefits

Locational Value: Adding Avoided Costs and Benefits
Illustrative

Θ Develop long term distribution planning roadmaps
\checkmark Use Open Stakeholder process for roadmap
\checkmark Include if and when formal DRPs are necessary for which locations
\checkmark Include risk assessments of technologies and reliability of resources
© Do not re-invent what has already been achieved
\checkmark Use existing DRP costing methodology, as applicable
$\checkmark \quad$ Follow SIWG technological requirements and IEEE 1547 standard
\checkmark Use existing integration and communication standards for interoperability
Θ Address cost allocation early
\checkmark Focus on "least regrets" solutions
\checkmark Enhance market equitability ("fairness") over time (not just the last DER)
\checkmark Provide pricing and investment stability
\checkmark Minimize technological obsolesetence

Addressing EV Load Growth

EV Cars in Urban Markets

7,896 Electric Vehicles registered in Washington

As of January 1, 2014

Map inciudes Plug-In Electric Vehicies (EVs) produced by major automakers since about 2011. It does not include cars that were converted to EV s by their owners, neighborhood E / s or EV models from the 1990 's that are still registered in Washington. WSDOT created this map based on data provided by the Washington State Department of Licensing.
Washington State
Department of Transportation

Source: Washington State Department of Transportation

EV Cars in Urban Markets

Roadmaps

Without Planning DER integration may

Item	Violation Trigger	Total
Installed DG (MW)		902
Regulator	Feeder Reverse Flow	$\$ 308,000$
LTC	Substation Transformer Reverse Flow	$\$ 1,642,000$
Reconductoring	Exceed 50\% Backbone Conductor/Cable	$\$ 75,588,700$
Substation Transformer and Switchgear	Exceed 50\% Capacity	$\$ 54,766,000$
Distribution Transformer	Exceed 100\% Loading, \% GDML Linear Relationship to \% Transformers Upgraded	$\$ 15,617,535$
Poles and Secondary	Assumed 15\% of Distribution Transformer Replacements need poles/secondary	$\$ 3,533,342$
Grounding Transformers	Exceed 33\% GDML (66\% in model)	$\$ 43,045,200$
Total		$\$ 194,500,777$

