LNG: Transportation Logistics and Opportunities – Northern Territories

FUELLING THE CANADIAN NORTH

Fuel represents 42% of <u>ALL</u> Cargo Shipped to the Canadian Northern Territories

The Problem:

Security of Supply now an Issue

- Major Oil Companies Not Interested in the Supplying the North
- Refineries are Being Mothballed
- Remaining Refineries at Full Capacity, AND Distribute to Markets Easy to Access
- No New Refineries in the Last 35 years. Upgraders are Challenged
- > Diesel Fuel Emissions are Significant
- Diesel Fuel in the North is Expensive; based on Highest Cost of Transportation

FUELLING THE CANADIAN NORTH The Opportunity

- Western Canada is Awash in Shut-in Natural Gas
- > Export Projects Increasingly Encumbered, therefore
- Increasing Interest in Domestic NG Liquefaction & Distribution
- NG Pricing reflects North American Oversupply
- > NG can replace diesel fuel: power plants and mines
- Emissions Much Less Than Diesel, and
- Much Cheaper

What is Liquefied Natural Gas (LNG)?

- □Liquefied Natural Gas (LNG) is a clear, colorless, odorless, non-toxic liquid
- □LNG is natural gas that is refrigerated and turns to a liquid at -162 degrees Celsius.
- **LNG** is less than ½ the weight of water.

Safety, Handling Fundamentals

As a liquid, LNG is not flammable

PRC

LOG

- □Ignition & burning requires vaporization and mixture with O₂ (air)
- LNG vapor <u>is</u> flammable. Temperature necessary to ignite NG is about 540° C. Gasoline requires only 230° C.
- □Burning is not sustainable outside the flammability limits (5% to 15% air, above 15% there is not enough O₂.
- LNG burns as a "lazy flame." More like a candle and not gasoline.
- □An LNG vapor cloud in the atmosphere will not explode, unlike propane
- LNG is not shipped or stored under high pressure.
- □LNG is stored at -162° C (- 260° F), at low pressure.
- Transport LNG at low pressure In double wall vacuum jacket trailers.

Environmental Benefits of LNG

Air Emissions for LNG Compared to Diesel*

- 100% Reduction in Sulfur Dioxide (SO₂)
- Up to 97 % Reduction in Nitrogen Oxides (NO_X)
- 50% Reduction in Carbon Dioxide(CO₂)
- 91% Reduction of Carbon Monoxide (CO)
- 89% Reduction in Particulate Matter (PM)
- 50% Reduction In Volatile Organic Hydrocarbon (VOC)

LNG Receiving

- □ LNG Truck Unloading
- □ LNG Storage
- □ Regasification (Vaporize LNG to Natural Gas)

- □ Simple, Compact, Scalable
- □ Low Energy Use
- □ Heat Recovery from Power Generation for LNG Vaporization

r		1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
US Diesel	(\$/MMBTU)	7.96	7.93	8.82	8.57	7.46	8.00	10.67	10.03	9.40	10.78	12.91	17.14	19.33	20.59	27.20	17.60	21.36	27.47	28.37
Henry Hub	(\$/MMBTU)	1.77	1.73	2.75	2.48	2.09	2.27	4.31	3.96	3.36	5.50	5.91	8.81	6.74	6.98	8.86	3.95	4.39	4.00	2.45

Margin (\$/MMBTU) 6.19 6.20 6.07 6.09 5.37 5.73 6.36 6.07 6.04 5.28 7.01 8.32 12.58 13.60 18.34 13.65 16.97 23.48 25.92

